Single-stranded DNA aptamers specific for antibiotics tetracyclines.
نویسندگان
چکیده
Tetracyclines (TCs) are a group of antibiotics comprising of a common tetracycline (TET) nucleus with variable X(1) and X(2) positions on 5 and 6 carbon atoms, such as oxytetracycline (OTC) and doxycycline (DOX). In this study, the tetracycline group specific (TGS) ssDNA aptamers were identified by modified SELEX method by employing tosylactivated magnetic beads (TMB) coated with OTC, TET, and DOX, respectively, as targets and counter targets. Twenty TGS-aptamers were selected, of which seven aptamers, designated as T7, T15, T19, T20, T22, T23, and T24, showed high affinity to the basic TET backbone (K(d)=63-483 nM). The specificity of these TGS-aptamers to structural analogues followed the order in which the TCs was employed during SELEX process (OTC>TET>DOX) except aptamer T22, which was highly specific to TET than OTC or DOX. Aptamers that were specific to one target molecule but fail to bind the other structurally related TCs were eliminated during counter selection steps. Three aptamers, T7, T19, and T23 contained palindromic consensus sequence motif GGTGTGG. The remaining TGS-aptamers showed many consensus sequences that are truncated forms of this palindrome forming mirror image or inverted sequences. For example, GTGG or its inverted form, GGTG motif was found in all TGS-aptamers. A consensus sequence motif TGTGCT or its truncated terminal T-residue was found in most TGS-aptamers, which is predicted to be essential for high affinity and group specificity. These TGS-aptamers have potential applications such as target drug delivery, and detection of TCs in pharmaceutical preparations and contaminated food products.
منابع مشابه
Challenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملChallenges to Design and Develop of DNA Aptamers for Protein Targets. I. Optimization of Asymmetric PCR for Generation of a Single Stranded DNA Library
Aptamers, or single stranded oligonucleotides, are produced by systematic evolution of ligands by exponential enrichment, abbreviated as SELEX. In the amplification and regeneration step of SELEX technique, dsDNA is conversed to ssDNA. Asymmetric PCR is one of the methods used for the generation of ssDNA. The purpose of this study was to design a random DNA library for selection of aptamers wit...
متن کاملDNA-Aptamers Binding Aminoglycoside Antibiotics
Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the eff...
متن کاملSpecific detection of oxytetracycline using DNA aptamer-immobilized interdigitated array electrode chip.
An electrochemical sensing system for oxytetracycline (OTC) detection was developed using ssDNA aptamer immobilized on gold interdigitated array (IDA) electrode chip. A highly specific ssDNA aptamer that bind to OTC with high affinity was employed to discriminate other tetracyclines (TCs), such as doxycycline (DOX) and tetracycline (TET). The immobilized thiol-modified aptamer on gold electrode...
متن کاملSingle-Stranded DNA Aptamers against Pathogens and Toxins: Identification and Biosensing Applications
Molecular recognition elements (MREs) can be short sequences of single-stranded DNA, RNA, small peptides, or antibody fragments. They can bind to user-defined targets with high affinity and specificity. There has been an increasing interest in the identification and application of nucleic acid molecular recognition elements, commonly known as aptamers, since they were first described in 1990 by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioorganic & medicinal chemistry
دوره 16 15 شماره
صفحات -
تاریخ انتشار 2008